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Two mean-field theories of random advection are formulated for the purpose of predicting the
probability density function (PDF) of a randomly advected passive scalar, subject to an imposed
mean scalar gradient. One theory is a generalization of the mean-field analysis used by Holzer and
Pumir [Phys. Rev. E 47, 202 (1993)] to derive the phenomenological model of Pumir, Shraiman,
and Siggia [Phys. Rev. Lett. 66, 2984 (1991)] governing PDF shape in the imposed-gradient con-
figuration. The other theory involves a Langevin equation representing concentration time history
within a fluid element. Predicted PDF shapes are compared to results of advection simulations by
Holzer and Pumir. Both theories reproduce gross trends, but the Langevin theory provides the bet-
ter representation of detailed features of the PDF’s. An analogy is noted between the two theories
and two widely used engineering models of turbulent mixing.

PACS number(s): 47.27.Gs, 05.40.+j, 02.50.—r

I. INTRODUCTION

Motivated by experimental observations that the prob-
ability density function (PDF) of a passive scalar ad-
vected by turbulence has long tails in some instances,
Pumir, Shraiman, and Siggia (PSS) proposed that non-
Gaussian behavior is an inherent property of random ad-
vection [1]. They formulated a phenomenological model
of the steady-state statistics of a passive scalar subject
to a mean gradient, undergoing random advection and
molecular diffusion. The model predicts that the PDF of
the scalar deviation from its mean value has exponential
tails.

For this configuration, the occurrence of tails that are
exponential, or nearly so, has been confirmed experi-
mentally [2,3] and numerically [4-6]. Holzer and Pumir
(HP) provided further mathematical interpretation based
on exact and mean-field analyses of stochastic processes
that emulate the advection of a passive diffusive scalar
[5]. Their mean-field theory recovers the phenomeno-
logical PDF evolution equation postulated by PSS and
identifies the approximations subsumed in the equation.
They note that the Gaussian core and exponential tails
predicted by the phenomenological equation agree with
PDF properties determined by numerical simulation of
advection diffusion. The agreement supports but does
not unequivocally confirm the validity of the mean-field
theory.

Here, it is shown that a key assumption within the HP
mean-field theory can be avoided. To obtain the evolu-
tion equation of PSS from their mean-field formulation,
HP assume that the effects of advection and diffusion are
additive. This assumption is avoidable because their for-
mulation at the point of introduction of this assumption
is exactly solvable. The solution is obtained and is com-
pared to the PSS result. The present solution exhibits
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a dependence of PDF shape on the statistics of the ad-
vection process that is absent from the PSS result. The
PSS result is recovered as a special case. In effect, a
generalized HP theory is obtained.

The validity of the generalized theory is not assured
because the HP formulation involves other assumptions
of undetermined accuracy. Alternative assumptions are
introduced that yield a linear Langevin equation govern-
ing the time history of scalar evolution within a fluid el-
ement. This formulation is mathematically simpler and
has a clearer physical interpretation. Numerical results
reproduce the salient features of PDF’s obtained by nu-
merical simulation of advection diffusion [5], and yield
good quantitative agreement in some instances. In con-
trast, generalized HP theory captures only gross trends.

Present application of the two mean-field theories is
limited to advection consisting of a time sequence of sta-
tistically independent jump events, formulated within the
framework of the linear-eddy model of advection diffu-
sion [4,5]. For advection processes of this type, the the-
ories predict Poisson-like PDF tails, consistent with pre-
vious theoretical and numerical results [5]. It has been
noted that the mechanism causing the Poisson-like tails
is specific to jump processes, and that continuum flow
generates long-tailed PDF’s by a different mechanism
[7]. The Langevin formalism can accommodate the addi-
tional mechanism, but this extension is not implemented
here.

It is shown that both theories can be represented as
weighted sums of random increments, a result that is use-
ful both for numerical work and for interpretation of qual-
itative trends. This representation can be interpreted
physically in the Langevin framework, but is purely for-
mal for generalized HP theory. Moreover, it is noted
that a recently derived expression for the pressure PDF
in a Gaussian flow [8] is formally equivalent to a sum
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of independent increments, though as in the generalized
HP theory, this equivalence has no obvious physical in-
terpretation. The formal result is nevertheless intriguing
because the representation is exact in this case, so its
mathematical structure cannot be attributed to model-
ing assumptions. It is therefore interesting to speculate
about the possible generality of this representation.

Another open question is whether the mean-field for-
mulations presented here constitute the totality of pos-
sible mean-field theories of random advection. In this
regard, it should be noted that a stochastic model with
some attributes of random advection has been studied us-
ing exact, mean-field, and numerical methods [9], yield-
ing results qualitatively consistent with the results pre-
sented here. However, that model does not conform to
a strict mechanistic definition of random advection dif-
fusion as stochastic evolution governed by two distinct
processes: advection, which moves fluid elements with-
out changing their internal state (i.e., scalar value), and
diffusion, which causes internal state changes through lo-
cal interactions between fluid elements. Models not con-
forming to this definition may have properties that do
not correspond to advection diffusion. Nevertheless, they
may be useful for purposes of refining physical intuition.

The possibility of formulating new or improved mean-
field theories is of practical as well as conceptual inter-
est because the two theories developed here are formally
analogous to two of the most widely used engineering
models of turbulent mixing, the coalescence-dispersion
(CD) and interaction by exchange-with-the-mean (IEM)
models [10]. Mean-field analysis may provide insight into
the performance of these models and may lead to im-
proved formulations.

This paper is organized as follows. In Sec. II, the
linear-eddy model formulation analyzed and numerically
implemented by HP is outlined. In Secs. IIT and IV,
the generalized HP and Langevin mean-field theories, re-
spectively, are constructed, analyzed, and compared to
the numerical results of HP. Implications of the analysis
and numerical comparisons are summarized in Sec. V.

II. LINEAR-EDDY MODEL

In the context of fluid flow in two or more dimensions,
random advection diffusion as defined in Sec. I corre-
sponds to evolution of a scalar field ©(x,t) governed by
the equation
96 +v-VO = kV?0, (1)
ot
where x is the molecular diffusivity. The velocity field
v(x,t) is taken to be a realization of a given random
process, unaffected by ©(x,t) (i.e., © is a passive scalar).

Advection diffusion encompasses a broader class of pro-
cesses than those governed by Eq. (1). The advective
term in Eq. (1) represents motion along continuous tra-
jectories. However, advection processes involving discon-
tinuous jumps are also of interest, both in their own right
and as idealized representations of continuum flow. For
example, the Lévy walk is a jump process whose scaling

properties have proven useful in interpreting turbulent
transport phenomena [11].

The linear-eddy model of random advection diffusion,
involving discontinuous jumps, has been introduced for
the purpose of emulating the physics of Eq. (1) on a
one-dimensional domain [4]. In this model, advection
is implemented as instantaneous events whose time se-
quence is governed by Poisson statistics (i.e., the epochs
of the events are statistically independent). Each event
is a spatial rearrangement of the scalar field within a ran-
domly selected interval of the domain. Each point within
the interval, except the midpoint, undergoes a finite dis-
placement, i.e., a jump. An important feature of the
linear-eddy model is that each event involves displace-
ment of a set of points, rather than a single point. Unlike
single-point jump processes, the linear-eddy model thus
incorporates multipoint correlations reflecting the spa-
tially correlated motion that occurs in continuum flow. A
rearrangement rule reflecting features of vortical motion
incorporates additional continuum-flow phenomenology
[4].

For present purposes, a variant of the linear-eddy
model formulated by HP is adopted. HP interpret their
formulation in terms of turbulent mixing processes. Here,
it is treated as an advection process in its own right. The
present objectives are to formulate mean-field theories of
the linear-eddy advection diffusion process, and to evalu-
ate these theories by comparing predictions to numerical
results of HP. The mean-field theories are formally appli-
cable to continuum flow, indicating the possible general-
ity of the present approach.

HP consider advection diffusion in one and two di-
mensions (1D and 2D). Space is discretized into equally
spaced points in 1D and sites of a square lattice in 2D.
Various rearrangement rules are employed, several of
which are specified in Secs. III and IV. For illustrative
purposes, the simplest 1D formulation is considered. The
simplest rearrangement rule consists of random selection
of a point n, followed by an exchange (“flip”) of the scalar
values at points n and n + 1, i.e., the transformation

(emen+1) - (@n+1aen)' (2)

The advection process, consisting of a random time se-
quence of flips, is the linear-eddy analog of the advection
term in Eq. (1). The diffusion process is implemented
by numerical solution of Eq. (1), without the advection
term, on the discretized domain. The numerical solu-
tion involves time integration during the time interval
between successive flips, followed by implementation of
the next flip, followed by further time integration, and so
forth.

This formulation is used by HP to compute the steady-
state statistics of the imposed-scalar-gradient configura-
tion. The scalar field is assigned an initial value ©,(0) =
n. By symmetry, the mean scalar field at any time t > 0
is (O, (t)) = ©,(0). After an initial transient, the scalar
field relaxes to a statistically steady state. For large t, the
PDF of the scalar deviation c,(t) = ©,(t) — ©,,(0) does
not depend on n or t, and therefore is denoted f(c). The
PDF depends on a single parameter, the ratio K = 77 /7,
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of time scales 7¢ and 7. governing advection and diffu-
sion, respectively. For the linear-eddy formulation based
on Eq. (2), HP take 7¢ to be the mean time between flips
involving the same pair of points, and they take 7. to be
a?/k, where a is the lattice spacing, normalized to unity.
More general definitions of the time scales are given in
Sec. IV.

Mean-field theories of advection diffusion are devel-
oped with reference to this illustrative case. General-
ization to other cases is considered subsequently.

III. GENERALIZATION OF HP MEAN-FIELD
THEORY

HP develop a mean-field theory of the advection diffu-
sion process of Sec. II in two parts. Molecular diffusion
is analyzed starting from the evolution equation for the
scalar value ©; in cell i of the discretized domain. In
contrast, advection is analyzed starting from an equa-
tion for the evolution of the PDF of this quantity, f(©;),
and coarse graining to obtain a Fokker-Planck equation.
These separate analyses are subsequently combined by
summing the two effects to obtain an overall evolution
equation for the Fourier transform of f(©;). There is no
obvious justification for the assumed additivity of effects.

Here, the summation of effects at the coarse-grained
level is avoided by incorporating the effect of advection
into the fine-grained description of the diffusion process.
Namely, the starting point is taken to be

ci(t) = (1 —2€)e;(0) + €ci—1(0) + ci+1(0)] + 1. (3)

Here, 7 is a random forcing term representing advective
effects; its properties are specified shortly. Apart from
this term, Eq. (3) is the finite difference representation of
the diffusion equation, Eq. (1), with the advective term
omitted, where ¢ = xt/a®. This representation is the
starting point of the HP mean-field analysis of diffusion
effects, except that it is formulated here in terms of the
scalar deviation ¢; = ©; — ¢ rather than ©;. The time
argument zero on the right-hand side of Eq. (3) refers
not to the initial condition, but to an arbitrary reference
time in the statistically steady state.

For ¢ small enough so that ¢ « 1, Eq. (3) is a quantita-
tively accurate approximation of the advection diffusion
process of Sec. II. Here, Eq. (3) is analyzed for arbi-
trary €. Though the small-¢ limit is encompassed by the
analysis, the results are not necessarily more valid in this
limit owing to the following modeling assumption that is
adopted.

As in the HP analysis, it is assumed that the random
variables ¢;(0) (7 = ¢ — 1, 4, ¢ + 1) are statistically in-
dependent. This assumption is ostensibly most accurate
in the limit 7. > 7y, i.e., the regime in which the decor-
relating effect of flips dominates the correlating effect of
diffusion. However, relaxation to a statistically steady
state implies that, for any 77/7., © differences between
neighboring points grow until diffusive effects balance ad-
vective effects. For present purposes, the statistical in-
dependence assumption is regarded as an approximation

of undetermined accuracy.

In the same vein, it is assumed here that the quantities
¢;(0) are independent of the random forcing term 7. The
interpretation of 7 as an advection term follows from re-
casting Eq. (3) as an equation for the time history of ¢ in
a comoving reference frame, or in fluid mechanical termi-
nology, the reference frame attached to a fluid element.
In that frame, a jump one step to the left or right leaves
the scalar value ©(t) within the fluid element unchanged,
but changes the scalar deviation ¢(t) = ©(t) —i(t) by +1
or —1, respectively. Here, location ¢ is parametrized by
t to represent the time history of fluid element location
subject to the jump process.

Consistent with this viewpoint, Eq. (3) is rewritten as

co(t) = (1 — 2€)co(0) + €[c—(0) + c4+(0)] + n(t), (4)

where the subscripts 0, —, and + respectively denote the
current location of the fluid element and its left and right
neighbors. Here, 7(t) is a random variable representing
the jump-induced displacement of the fluid element dur-
ing the time interval [0,t]. [More precisely, n(t) is the
negative of this displacement, but for advection processes
considered here, symmetry allows the sign change to be
omitted.] For the advection process of Sec. II, the PDF
g[n(t)] of the random variable 7)(t) can be derived exactly.
Before considering this case, general features of the rela-
tionship between g and the statistics of ¢g are examined.

As noted in Sec. II, the scalar deviation PDF is in-
dependent of spatial location and time under steady-
state conditions in the imposed-uniform-gradient config-
uration. Therefore, co(t), c4(0), and c_(0) are governed
by the PDF f(c). Under the statistical independence
hypotheses that have been adopted, Eq. (4) determines
f(c) for given € and g(n) without further approximation.

The solution is most readily obtained by invoking prop-
erties of the characteristic function of a random variable,
defined as the Fourier transform of the PDF,

¢ (k) = /x e*?h(Z)dZ, (

wt
—

where h is the PDF of a random variable z and ¢, is the
characteristic function of z. The key property of interest
is the following relationship [12] between the character-
istic function ¢, of a weighted sum A = > . w;z; of
independent random variables z; and the characteristic

functions ¢; of z;, 1 =1,...,n:
oa(k) = [ #i(wik). (6)
i=1
For the special case n = 2, w; = wy = 1, this re-

lation is obtained by Fourier transforming the relation
hs(S) = [Z°_hi(u)hz(S — u) du, where h, is the PDF of
the random variable s = z; + 23, h1 is the PDF of z;, and
hs is the PDF of z;. Generalization to an arbitrary set of
weights w; is straightforward. The PDF of A is obtained
by taking the inverse Fourier transform of Eq. (6).

HP applied Eq. (6) to Eq. (3) without the n term.
Applying it here to Eq. (4), the relation
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e(k) = @elk(L — 2€)]¢7 (ke) by (k) (7)

is obtained. It is convenient to analyze the logarithm of
this equation, involving sums instead of products. The
solution is

()] = 3 52 () Intenlke - 20771}, (8

n=0p=0

which is readily verified by substitution into Eq. (7).

In the limit € — 0, the only nonvanishing term of Eq.
(8) is » = p = 0, giving ¢.(k) = ¢,(k). This is a trivial
result because 7(t) is identically zero for ¢t = 0. As noted
earlier, the validity of Eq. (3) in this limit does not imply
the validity of the small-e limit of Eq. (8), owing to the
statistical assumptions that have been adopted.

For finite ¢, the dependence of f(c) on the functional
form of g(n) is examined. (Here, the argument t is sup-
pressed.) For the jump process under consideration, g is
a discrete distribution. It can be approximated by a con-
tinuous distribution if its variance is much greater than
unity, as occurs in some cases of interest. For the mo-
ment, distributions g are considered without reference to
the underlying advection process.

The choice g(n) = 5% exp(—|n|/vD), the two-sided

exponential distribution, is of particular interest. Sub-
stitution of its characteristic function, ¢,(k) = 75z,
into Eq. (8) recovers the solution obtained by HP. [The
simpler solution obtained originally by PSS for € = % is
recovered by substituting this ¢, (k) into Eq. (9), below.]
As noted in Sec. I, the result of HP was obtained by as-
suming the additivity of advection and diffusion effects in
the framework of mean-field theory. Thus, the additiv-
ity assumption is equivalent to selection of a particular
functional form of g(n).

HP adopted the additivity assumption for the spe-
cific purpose of reproducing the PSS result, and noted
that it has no obvious physical basis. Equation (8) in-
dicates that mean-field theory admits other possibilities.
For example, if g(n) is Gaussian with variance o2, then
¢n(k) = exp(—o2k?/2), giving Gaussian f(c). Thus,
mean-field theory per se does not require f(c) to be long
tailed. The exponential tails deduced from mean-field
theory by PSS and HP are due to the functional form of
g(n) imposed by the additivity assumption.

For advection processes involving independent jump
events, long tails nevertheless occur owing to the Pois-
son statistics governing fluctuations of the time interval
between successive events. This has been demonstrated
by exact analysis of a simplified advection model [5], and
is recognized as a general property of jump-type advec-
tion processes [7]. It also follows from mean-field theory
based on an exact representation of jump statistics, as
demonstrated shortly.

Further analysis of Eq. (8) is restricted to the jump
process of Sec. II. For this purpose, ¢ is set equal to % As
noted by HP, there is no uniquely preferred choice of ¢,
and there should be no significant qualitative differences
between results for different values. The value € = %
is chosen because it allows considerable simplification of
Eq. (8), namely

de(k) = [ [8n(27"K)]*" (9)

A useful interpretation of Eq. (9) is obtained by com-
paring it to Eq. (6), which indicates that f(c) is the PDF
of the random variable c obtained by forming the follow-
ing weighted sum of random samples 7; ,, from the PDF

g9(n):
oo 2"
Cc = Z 2 " Z Nin- (10)
n=0 =1

The random samples 7; , are statistically independent;
double indexing is adopted for convenience.

This representation of ¢ is useful for analysis and com-
putations, but it has no obvious physical interpretation.
The mean-field theory developed in Sec. IV likewise yields
a weighted sum of random samples from the advection
PDF, with a straightforward physical interpretation in
that instance. As noted in Sec. I, a recently derived ex-
pression for the pressure PDF in a Gaussian flow [8] in-
volves an infinite product representation of the character-
istic function, indicating that the statistics are based on
a weighted sum of independent random variables. This
representation may thus be more broadly applicable than
is apparent from the derivation of Eq. (10).

Equation (10) is now applied to the advection process
of Sec. II. Recall that n(t) in Eq. (4) is a random variable
representing the jump-induced displacement of the fluid
element during the time interval [0, ¢]. For the choice € =
3.t =a?/(2k) = 7./2. In Sec. II, the mean time between
flips involving the same pair of points is denoted 7¢. Since
a given point can flip with either neighbor, the mean time
between displacements of a point is 7¢/2. Therefore the
mean number of displacements during [0, ¢], here denoted
by p, is 7¢/7 = K~'. The dependence of f(c) on the
parameter yu is considered.

Because displacements are statistically independent
events, the number of displacements during [0, ¢] is a ran-
dom sample from the Poisson distribution with mean p.
Moreover, positive and negative displacements are inde-
pendent, so the net displacement can be represented as
n(t) = n*(t) — n7(t), where the number of positive and
negative displacements, n*(t) and 77 (¢), respectively, are
each randomly sampled from the Poisson distribution
with mean p/2.

It is convenient to adopt this representation in Eq.
(10). Each 7; , is expressed as 7; , = ni’fn — M; n» Where
each nii’n is Poisson distributed with mean u/2. To sim-
plify the notation, Eq. (10) is expressed in the equivalent
form

c=st -5, (11)

where each of the random variables s* is a weighted sum
of random variables as given by Eq. (10) with corre-
sponding superscripts on 7;,. In this formulation, the
individual terms in each sum are governed by the Pois-
son distribution [12]

aupln) =23 W50 5 )
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where 7 denotes any of the random variables nzcn. The
random variables s* and s~
with PDF denoted h(s).

This formulation is adopted because it is convenient
in numerical work to determine h(s) based on Eq. (12),
and then to determine f(c) by convolving h with itself,
as prescribed by Eq. (11). In contrast, the distribution
of net displacements involves a double sum which is far
more costly to evaluate.

are identically distributed,

Based on the characteristic function of Eq. (12). Eq.
(11) can be used to solve Eq. (9), yielding
‘ (k)%
dc(k) = exp ,uz ——m (13)

Though this expression is convenient for certain analyti-
cal purposes, it is not used here.

The formulation based on Eq. (11) provides a trans-
parent demonstration of the origin of long-tailed PDF’s
in the case of jump-type advection diffusion processes.
The random variable c is represented as a weighted sum
of Poisson-distributed random variables. The tails of
f(c) are therefore of the same form as the tails of the
PDF g,/2(n) governing the individual terms. In Eq.
(12), adoption of Stirling’s approximation for j! gives,
for n > 1, Ing,/2(n) ~ —nlnn.

Other aspects of PDF shape are sensitive to the param-
eter . The mean and standard deviation of g, /() are
1/2 and (u/2)'/2, respectively. For u > 1, the discrete-
ness of the distribution is effectively a fine-grain property,
so f(c) is relatively insensitive to details of the advection
process.

Formal derivations of these properties are omitted be-
cause the underlying physics is understood [5,7], and be-
cause numerical demonstrations are provided. Numerical
work is facilitated by the following reformulation of Eq.
(10). In applying this relation to s*, the summation over
i involves, for given n, 2" random variables governed by
the PDF g,,5. Physically, this sum represents the num-
ber of displacements of a given sign during a time interval
[0,2™t], so the sum is governed by the PDF gon-1,. i.e..
the Poisson distribution with mean 2"~ !y, (This is the
“reproductive property” of the Poisson distribution [12].)
Therefore the sum over i is replaced by a random vari-
able 1, governed by gan-1,,. To account for the weighting
277 in the sum over n, a transformation to the random
variable (, = 27"n, is performed in Eq. (12), giving

oo

_gn-1,
g2“‘(<'n_ 2 ‘Z

Jj=0

—27"j). (14)

The PDF h(s) is determined for given p by convolving
gu/2(Co) With g,(¢1), convolving the result with ga,((2),
and so forth, until convergence. For p values considered
here, the number of iterations required is of order 10.
Finally, h(s) is convolved with itself to obtain f(c).
Numerical results are compared in Fig. 1 to the sim-
ulation results of HP for the advection diffusion process
of Sec. II. The mean-field PDF’s reflect the qualitative
trends deduced from the properties of g, /. For small u

(large K), the simulation results exhibit features sensitive
to details of the advection process. The origin of these
features is discussed in Sec. IV. It is evident that the
mean-field theory has little predictive value with regard
to features of PDF shape other than overall trends.
Also shown in the figure are results based on an alter-
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FIG. 1. Semilogarithmic plot of the PDF of scalar devia-
tion ¢ for advection diffusion in 1D based on the two-point
flip. Left of center line: simulation results of HP [5] (solid);
Gaussian of the same variance (dashed). Right of center line:
predictions of generalized HP theory (dashed) and Langevin
theory (solid). Results are parametrized by the ratio K of ad-
vection to diffusion time scales. (a) K = 0.083; (b) K = 1.66;
(c) K = 16.6.
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nate mean-field theory, which appears to be more promis-
ing with regard to quantitative prediction. The formula-
tion and application of this theory are considered next.

IV. LANGEVIN MEAN-FIELD THEORY

Equation (8) determining the statistics of ¢ in terms
of € and the statistics of n was obtained from Eq. (4)
by assuming that c¢(0), c¢4(0), and c_(0) are indepen-
dent random variables. A different mean-field theory is
obtained by setting c4(0), and c_(0) equal to zero. In
fact, this is more in keeping with the mean-field concept
because it is a replacement of these quantities by their
mean values.

The key practical distinction between this formulation
and generalized HP theory is that Eq. (4) now yields
a meaningful result in the limit ¢ — 0. Recalling that
e = kt/a?, Eq. (4) reduces in this limit to the linear
Langevin equation

dc

dt = —ﬂc+77'(t)7 (15)

where the subscript and argument of ¢ are suppressed,
B = 2k/a?, and 7'(t) = d';—(tt). The solution of this equa-
tion for any realization of the random process 7'(t) is

t
C(t)z/ n'(t')e_ f:, B(t")dt" dtl
t

= / ' ()e~ ()8 gy’ (16)

The solution is shown for the more general case of time-
varying (3 as well as for constant 3.

The purpose of the generalization is to indicate fea-
tures of advection diffusion that are not represented in
the mean-field analysis but might be captured by a more
general formulation. The most general formulation in the
framework of Eq. (15) is obtained by taking 3(t) to be
a random process that may depend on c(t') and 7n'(¢')
for all ¢ < t. If the statistics of B(t), including these
dependences, were known exactly, then Eq. (15) would
be an exact representation of the concentration time his-
tory within a fluid element. If the exact representation
involved dependence of 3 on ¢, then Eq. (15) would be
nonlinear in ¢ and Eq. (16) would no longer apply.

A recent analysis of continuum advection implies de-
pendence of 3 on c or iy’. For the case of Gaussian random
flow, the functional form f(c) ~ |c|~/2exp(—~|c|) was
obtained for |c| > 1 [7]. This result was attributed to the
fluctuation statistics of a decay parameter analogous to
(. It was noted that non-Gaussian statistics of the dis-
placement process [here, 7’(t)] are not required to obtain
this result.

Applying Eq. (15) to continuum flow, it is evident
from Eq. (16) that allowing 3 to be time dependent, but
independent of ¢ and 7', does not give non-Gaussian f(c)
for Gaussian 7'(t). Dependence of 3 on ¢ or 7’ is also
required.

This generalization is not implemented here. Rather,

Eq. (15) with constant 8 is applied to jump-type ad-
vection processes. It was noted earlier that jump-type
advection, reflected in the statistics of #’(t), causes the
tails of f(c) to be Poisson-like. [This behavior is cap-
tured by Eq. (15) with constant 8. To see this, integrate
over a time interval much shorter than 1/8 and note that
the tails of ¢ are determined by the Poisson statistics of
jump events, as in generalized HP theory.] This obser-
vation does not rule out the possibility that mechanisms
omitted from the model, such as time variation of 3, may
induce comparable, or slower, large-c falloff. To assess
the validity of the present formulation, and to motivate
future theoretical development (with possible relevance
to continuum advection), the Langevin theory is com-
pared to numerical simulation results of HP.

For the advection diffusion process of Sec. II, n’(t) can
be expressed in the form

() =) mid(t—t;), (17)
j=1

where t; < t is the epoch of the jth displacement event,
ordered backward in time from time ¢, and the displace-
ment 7; is a Bernoulli trial (i.e., &1 with equal proba-
bility). In accordance with Poisson statistics, the sepa-
rations s; = t;_; — t; are independent random samples
from the PDF h(s) = (1/T) exp(—s/T), where the mean
time T between events is 7¢/2, as in Sec. III. (In this no-
tation, to corresponds to ¢.) In terms of these quantities,
Eq. (16) gives

c = nle"-ﬁﬂ + n2e—(81+82)ﬂ + nse—(81+92+83)ﬁ 4+,
(18)

As in generalized HP theory, the treatment of the ad-
vection process is exact. Rescaling time in units of
1/8 and noting that 8 = 2/7., the Langevin theory is
parametrized by 8T = K.

Here, c is expressed as a sum of random variables, but
the terms in the sum are not statistically independent be-
cause the jth term involves quantities si,...,s;_1 that
also appear in the preceding terms. Therefore the ana-
lytical techniques of Sec. III are not applicable. To ob-
tain a sample value of ¢ from Eq. (18), a Monte Carlo
technique is used, involving random sampling of n; and
s; from their respective PDF’s and summing a sufficient
number of terms (generally within the range 102-10%) to
obtain convergence of the sample value.

Results are compared to the numerical simulations of
HP and to generalized HP mean-field theory in Fig. 1.
The statistical variability of the Langevin-theory results
reflects the finite number of ¢ values (generally within
the range 10%-107) used to form the histogram of f(c).
It is evident that the Langevin theory is in better over-
all agreement with simulated PDF’s than is generalized
HP theory, especially at large K. Generalized HP the-
ory provides a better qualitative representation only at
small ¢. The central peaks predicted by the Langevin
theory are too sharp because the exponential decay of c
within the theory is too rapid at small ¢. This reflects
the assumed decay toward ¢ = 0 rather than toward the ¢
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value corresponding to the local environment of the fluid
element.

For large K, PDF shape is sensitive to details of the
advection process, as noted by HP. In this regime, the
epoch of the most recent displacement is the dominant
influence, and its manifestation is the shoulder on each
side of the central peak. Additional far-tail structure
reflects rare occurrences of multiple displacements within
a time interval much shorter than T

As noted earlier, Poisson-like tails of f(c) can be in-
ferred from Eq. (16). The dependence of the onset of this
behavior on K is indicated by the structure of Eq. (18).
For small K, the exponentials multiplying the terms n;
fall off gradually, so c is effectively the sum of a large
number of nearly identical random variables. This ex-
plains the nearly Gaussian core of f(c) for small K. For
larger K, this approximate conformance to the central
limit theorem no longer holds, resulting in strongly non-
Gaussian PDF’s.

For further evaluation of the Langevin theory, it is ap-
plied to two other advection diffusion processes simulated
by HP in 1D and 2D, respectively. The 1D process is
motivated by the spatial discretization effects apparent
in the shape of the K = 16.6 PDF of Fig. 1. To suppress
discretization effects, HP simulated advection diffusion
based on the multipoint flip

(@n—la en—l+1a ey ®n+l—1, G)n-H)
- (®n+l,®n+171»----Gn/l+1’®n—l)3 (19)

where flip “radius” [ is a random variable sampled from
the half-Gaussian PDF

pw:(%lg) expl-1(/lo)?). 150, (20)

The parameter [, was assigned the value 16a, large
enough so that lattice discretization would not signifi-
cantly affect the shape of f(c). Therefore Eq. (20) and
the ensuing mean-field analysis of this case are formu-
lated for a spatial continuum —oo < z < 400, with dis-
tance expressed in units of a.

To represent this process within the Langevin theory,
the quantity n; in Eq. (18), representing the displace-
ment at time ¢;, is taken to be a random sample from a
cumulative distribution function (CDF) G(7n) determined
from p(l). The displacement CDF G(7) is the ratio of the
frequency ®(n) of displacements in the range [—oo, 7] to
the total displacement frequency ®(oc). These quanti-
ties are derived in terms of the flip frequency per unit
distance, denoted p. (In lattice terminology, pa is the
flip frequency for given n. The continuum analog of the
flip center n is denoted zo.)

Denote the current location of the fluid element as
x = 0. Then ®(n) is the frequency of all flip events
whose centers xo are to the left of z = /2 (otherwise
the displacement would exceed 1) and whose radius [ ex-
ceeds |z¢| (otherwise the flip would not include the point
z = 0). Thus,

n/2 oo
o) = | dmo[ EOLE (21)

Substitution of Eq. (20) for p(l) gives

1/2
B(o0) = (;) plo (22)

and

=1+ ()" [ o ()
—Lexp|-4(n/lo)*] , n=0. (23)

Because the PDF g¢(7) is an even function of 5, G(n) for
1 < 0 is determined from G(—7n) =1 — G(7n).

Equations (22) and (23), in conjunction with the statis-
tical properties of the event separations s;, constitute an
exact representation of the advection process on the spa-
tial continuum. (An exact lattice representation can also
be obtained, but as noted, the numerical results would
not be significantly different.) The final step in the for-
mulation of the Langevin theory for this process is spec-
ification of the time-scale ratio K in terms of parameters
of the theory.

HP adopt the general definitions 7; = (p&?)~! and
7. = £2/k for the d-dimensional advection and diffusion
time scales, respectively, where £ is a characteristic ad-
vection length scale. For the advection process governed
by Eq. (20), they take & = 2(l) = (8/m)/2l,, giving
75 = &1 (o).

The evaluation of 3 in Eq. (18) is based on the relation
3 = 2x/L?, where L is a length scale over which diffusion
acts. For the advection process consisting of two-point
flips, L = a because the flips generate fluctuations on
the scale of the lattice spacing. For advection governed
by Eq. (20), the lattice spacing is no longer the relevant
length scale. In accordance with HP, L as well as € is set
equal to 2({l). Though there is some arbitrariness in this
assignment, computations involving variation of L over
a factor of two indicate that qualitative comparisons are
not affected by the length scale assignment. The choice
L = ¢ gives 3 = 2/7. and thus K = 3/[2®(c0)].

Langevin theory results are compared to simulation
results of HP for this process in Fig. 2. It is evident that
Langevin theory captures the dependence of tail shape
on K. As in Fig. 1, the central peaks are too sharp.

A 2D advection diffusion process simulated by HP on
a square lattice involves a 12-site flip, illustrated in Fig.
3. The 12 sites closest to the center of a selected lattice
cell are permuted by a 90° clockwise or counterclockwise
rotation. Denoting the lattice directions as ¢ and j, the
initial scalar field is ©; ;(0) = i. The 2D analog of Eq.
(3) is

i j(t) = (1 —4€)c; j(0) + €[ci—1,;(0) + cit1,;(0)
+¢ij-1(0) + ¢ij+1(0)] +m, (24)

where again, ¢ = xt/a?. Invoking the mean-field approx-
imation, the quantity in square brackets is set equal to
zero. Because the mean scalar value changes only in the
direction i, 1 is now the i component of the flip-induced
displacement. Equations (15)—(18) of Langevin theory
apply, with parameter assignments and statistical prop-
erties reflecting the 12-site flip in 2D.
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FIG. 2. Semilogarithmic plot of the PDF of ¢ for advection
diffusion in 1D based on flips with a half-Gaussian distribu-
tion of sizes. Left of center line: simulation results of HP
[5] (solid); Gaussian of the same variance (dashed). Right
of center line: predictions of Langevin theory (solid). (a)
K = 0.6536; (b) K = 13.07.

For this process, the PDF of the deviations n; of Eq.
(17) is
9(n) = 5(26(n — 2) + 38(n — 1) + 26(n)

+38(n + 1) + 26(n + 2)], (25)

[ J ]
@ [ ] [ ] o
X
[ J [ [ ] [ J
[ J @

FIG. 3. Array of sites subject to the 12-site flip. The flip
consists of 90° clockwise or counterclockwise rotation of the
array about its center, denoted x.
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reflecting the number of jumps within the 12-site flip cor-
responding to changes in ¢ of 0, £1, and +2, respec-
tively. [Note that j in Eq. (17) is an event index, while
in Eq. (24) it is a lattice coordinate.] The statistics of
the time separations s; in Eq. (18) are again governed
by the exponential distribution with mean 7'. In terms of
the flip frequency per lattice site (pa? in HP notation),
the mean time between events affecting a given site is
T = 1/(12pa?).

In 2D, B = 4x/L?, reflecting the factor of 4 in Eq. (24).
Following HP, L and ¢ are set equal to 2a. (As earlier,
this is somewhat arbitrary.) Based on these relations,
K = k/(16pa*) and AT = 4K/3.

Langevin theory predictions for this process are com-
pared to simulation results of HP in Fig. 4. As noted
by HP, the results indicate that that a change of spatial
dimension does not fundamentally impact the statistics
of the process. The double shoulder reflects the different
types of jumps within the 12-site flip. Langevin theory
captures the qualitative features. The quantitative accu-
racy is also noteworthy.

FIG. 4. Semilogarithmic plot of the PDF of c for advection
diffusion in 2D based on the 12-site flip of Fig. 3. Left of
center line: simulation results of HP [5] (solid); Gaussian of
the same variance (dashed). Right of center line: predictions
of Langevin theory (solid). (a) K = 1.66; (b) K = 16.6.
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V. DISCUSSION

Previous mean-field analysis of random advection was
motivated by experimental and computational results in-
dicating the occurrence of long-tailed scalar PDF’s in tur-
bulence. Here, it has been shown that this behavior is
not a generic prediction of mean-field theory. Rather,
the tail shape predicted by mean-field theory is found to
be sensitive to the advection process. In particular, the
present analysis indicates that exponential falloff inferred
from previous mean-field analysis is a consequence of a
modeling assumption that, in effect, selects exponential
statistics. This assumption is avoided here by means of
an exact treatment of advection. The present approach
reveals a wider range of possible behaviors within the
framework of mean-field theory than had previously been
supposed.

For jump-type advection processes, the present ap-
proach predicts Poisson-like PDF tails. PDF tails for
jump-type processes may not be of exactly this form [5],
but the distinction between this form, exponential tails,
or some intermediate behavior is undetectable at the pre-
cision of practical computations and experiments. Thus,
the agreement that is obtained between mean-field pre-
dictions of tail behavior and simulation results for jump-
type advection does not guarantee the mechanistic valid-
ity of the present mean-field analysis.

The exact treatment of advection in the present ap-
proach allows data comparisons to be interpreted in
terms of the approximate treatment of the diffusion pro-
cess. Two alternative approximations are adopted that
differ both in physical interpretation and in the mathe-
matical development that ensues. Generalized HP the-
ory is based on the assumed statistical independence of
fluid elements separated by a characteristic advection dis-
tance. Langevin theory is ostensibly more simplistic in
that it neglects entirely the deviations from mean proper-
ties in the neighborhood of a given fluid element, and in
this sense is more literally a mean-field theory. Neverthe-
less, Langevin theory is found to be in better agreement
with simulation results. It captures features of scalar
PDF sensitivity to the relative strength of advection ver-
sus diffusion, and to details of the advection process. Sig-
nificant discrepancies are found, reflecting limitations of
the present formulation.

The Langevin theory is amenable to generalizations
that may address these limitations. In particular, the de-

cay parameter (3 representing diffusion effects is held fixed
in the present formulation, although theoretical analy-
sis [7] indicates that its fluctuation properties may have
significant impact on PDF shape. The present model-
ing framework does not provide a characterization of the
fluctuations of 3. The Lagrangian path-integral approach
[7], which incorporates a more detailed representation of
the interaction of a fluid element with its surroundings,
may provide such a characterization. Its application to
jump-type advection might clarify the similarities and
differences between this type of advection and contin-
uum advection, and might stimulate further development
of mean-field theory.

In the latter regard, it is interesting to note paral-
lels between the mean-field theories developed here and
two widely used engineering models of turbulent mix-
ing, the coalescence-dispersion (CD) and interaction by
exchange-with-the-mean (IEM) models [10]. Both mod-
els can be cast in terms of Eq. (4) with the random forc-
ing term omitted. Without the random forcing, scalar
fluctuations are not maintained, and the PDF of c evolves
to a fully mixed state. Within CD, this evolution is gov-
erned by the convolution of the (now time-varying) scalar
PDF with itself, as in generalized HP theory. Within
IEM, the evolution is governed by exponential decay to-
ward the fully mixed state, as in Langevin theory. Within
either model, changes in the local environment are repre-
sented by incorporating empirical source and sink terms.

The key distinction between these models and the
present mean-field theories is that the source of fluctua-
tions in the mean-field theories is an exact representation
of advective effects in the imposed-scalar-gradient config-
uration. It remains to be determined whether the further
development of mean-field theory can contribute to the
improvement of engineering models applied to more gen-
eral configurations.
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